Q.P.Code: 18ME0309

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations May/June-2024 THERMODYNAMICS

			THERMODYNAMICS	D.			
		(Mechanical Engineering)			Max. Marks: 60		
T	im	e: 3	Hours	Max. I	laiks	s. 00	
			PART-A				
			(Answer all the Questions $5 \times 2 = 10$ Marks)	CO1	L2	2M	
	1	a	Explain the term cyclic process.	CO2	L2	2M	
		b	Compare steady and unsteady flow process.	CO2	L1	2M	
		c	Define an Ideal gas.	CO3	L1	2M	
		d	What is critical state, critical pressure, and critical temperature?		L1	2M	
		e	How do accessories differ from mounting?	COS	LI	2111	
			PART-B				
			(Answer all Five Units $5 \times 10 = 50$ Marks)				
			UNIT-I				
	2	a	Define the following	CO1	L1	5M	
			i) Enthalpy ii) Internal Energy	10			
		b	What is quasi static process? Explain in detail.	CO1	L2	5M	
			OR		- 4	#3 #	
	3	a	Classify the differences between heat and work transfers.	CO1	L4	5M	
			Explain about Heat transfer.	CO1	L2	5M	
			UNIT-II				
	4		What is Steady Flow Process? Derive SFEE for any one engineering	CO ₂	L3	10M	
			system.				
			OR				
	5	a	Compare heat engine and a reversed heat engine.	CO ₂	L5	5M	
		b	A heat engine receives heat at the rate of 1500 KJ/min and gives an	CO2	L3	5M	
			output of 8.2 KW. Determine				
			i) The thermal efficiency ii) The rate of heat rejection.				
			UNIT-III				
	6		Develop the equation used for computing the entropy change of an Idea	CO3	L3	10M	
	U		gas.				
			OR				
	7		A fluid at 200 KPa and 300°C has a volume of 0.8 m ³ . In a frictionless	s CO3	L3	10M	
	′		process at constant volume the pressure changes to 100 KPa. Find the	9			
			final temperature and the heat transfer a) the fluid is air, b) the fluid is	3			
			steam.			2	
			UNIT-IV				
	0	_	Develop an expression for Carnot Cycle and efficiency of cycle	CO4	L3	5M	
	8	a	A carnot engine working between 400° C and 40° C produce 130 KJ o	f CO4	L3	5M	
		Ю	work. Determine i) The thermal efficiency, ii) the heat added, iii) The	e			
			entropy changes during the heat rejection process.				
			CHILOPY CHAIRSON CHAIRS and Hour reliance beautiful				

The swept volume of a diesel engine working on dual cycle is 0.0053m^3 . CO4 L4 10M The maximum pressure is 65 bar. Fuel injection end at 5% of stroke. The temperature and pressure at the stroke of compression are 80° C and 0.9 bar. Determine efficiency of air take $\gamma = 1.4$.

UNIT-V

Explain with neat sketch the construction and working of bibcock and CO5 L2 10M Wilcox boiler.

OR

Explain with neat sketches of the following boiler mountings

CO₅ L₂ 10M

i) Water level Indicator ii) pressure gauge

*** END ***